ATCA for Digital Signal Processing

Rob Persons
Sr. Field Applications Engineer
Agenda

- Company Intro
- Brief Introduction to Advanced Telecom Computing Architecture (ATCA)
- Basic Digital Signal Processing Concepts
- New ATCA Technologies to Address DSP Applications
 - High Performance Multi-Core Processors
 - Updated Vector Processing Units in Cores
 - High Speed Fabrics in Backplane
 - Advanced Flow Control Software on Switches and Blades
 - Repurposing Packet Processing Software to target DSP Applications
Emerson At-A-Glance 2012

US $24.4 Billion in Sales

- Manufacturing and/or sales presence in more than 150 countries
- Over 200 manufacturing locations around the world
- No. 120 on 2012 FORTUNE 500 list of America’s largest corporations
- Founded in 1890

Headquarters in St. Louis, Missouri USA
NYSE: EMR

Diversified global manufacturer and technology provider

Approximately 133,000 employees worldwide
What is AdvancedTCA?

- An open standard (COTS) developed 10+ years ago deployed in all major telecom networks
- An ideal basis for a common platform, on which many applications can be built
- The standard covers shelves, boards, mezzanines, and management
- Systems are 19” wide and are designed to fit in 600mm deep racks
- Current ATCA Chassis can support 350W+ per slot, but can be limited to 200W
- High speed 10G and 40G internal data fabrics now deploying
- Blades are 8U (14”) high and have no fans
Benefits to the Use of ATCA for DSP Processing

- Multi-core Xeon Processors Well Suited to Process Complex Data
- ATCA Server Blades Efficiently Supply Many Cores and a Great Deal of Memory to Solve Problems
- ATCA is Inherently Rugged
 - Applications that are Shipboard, Manned Airborne, and Transit Case Applications use it today
- Open Standard with Many Vendors
- Other Bussed Architectures add Cost to Support Added Ruggedization when it is not Needed in Many Benign Environment Applications
- Aggressive Roadmap of Products Targeting Algorithm Processing Blades (Tic-Toc)
Basic DSP Concepts

- Sensors Detect Targets
- High Speed Interface Transfers to Rack with Computing Equipment
- Analog Data Tracking Data is Either
 - Converted to Digital at the sensor
 - Converted to Digital at the DSP Processing Unit

- Traditionally DSP Systems have been VME
- Trend Toward OpenVPX
 - High Speed Serial Replaces Parallel Bus
 - High Speed Serial can be PCI-E or Serial Rapid I/O
- Multi-Processor Board that Supports High Level DSP Libraries
- Host Processor to Manage Data Flow
- Range of Ruggedization Levels Required based on Application
High Performance Processing Core

- Intel® E5-E2600 “Sandy Bridge”
 - 1.8Ghz/core
 - 8 Multi-threaded Cores
 - 32nm
- 20MB L3 Cache, 2.5MB per Core
- Four Integrated Memory Controllers
- Dual QuickPath Interconnect between both CPUs
- PCIe Gen3, 40 Lanes Per Socket
- Socket Ready for 10 Core “Ivy Bridge” (22nm)
Packet Processing Blades with 40G

- Gen3 PCIe from Processor Supports 40G Ethernet Controllers
- Intel Supplies Alternative Coprocessor SKUs for Data Plane HW Offloading
 - HW Encryption/decryption
 - 40G Offload Support for CPU
- 40G Direct Connection between ATCA Fabric and Processor
ATCA Dual “Sandy Bridge” Packet Processing Blade

- Cave Creek Acceleration Modules Offload 40G Traffic to Processors
- 40G Fabric Interfaces Efficiently Transfer Data to the Processor Cores
- Flow Control Software Running on the Boards Manages IP Dataflow to and from the Cores
- Interact with Specialized Packet Processing Version of OS
Intel®’s Advanced Vector Extensions (AVX)

- Introduced in Sandy Bridge Family of Processors
- Extends 128Bit SIMD Instructions of SSE to 256Bits
 - This potentially doubles floating point operation performance when using single precision floating point numbers
- Each Core supports AVX Instructions
- Specific Instructions that Support Signal Processing Applications
- Intel® Supplies Optimized Libraries for AVX
 - Integrated Performance Primitives (IPP)
- Optimized VSIPL Libraries are also Available from 3rd Parties
- Haswell Processors will Support AVX2 which
 - Adds specific functions to fetch non-contiguous data from memory
 - Promotes AVX 128Bit SIMD to 256Bits
 - Vector shift instruction with variable shift count
(4x) 10GBASE-KR Fabric Configuration
(PICMG 3.1R2 “Option 3-KR”)

4 links across 4 ports

Hub Slot

10 Gbps Link

MAC → SERDES → 10.3125 Gbps baud rate, 10 Gbps bit rate

Node Slot

10 Gbps Link

10 Gbps Link

MAC → SERDES → 10.3125 Gbps baud rate, 10 Gbps bit rate

Total Bandwidth

41.25 Gbps baud rate = 40 Gbps bit rate
40GBASE-KR4 Fabric Configuration
(PICMG 3.1R2 “Option 9-KR”)

1 link, packets are stripped across 4 ports

Total Bandwidth
41.25 Gbps baud rate = 40 Gbps bit rate
Flow Control on ATCA Switches

Advance Flow Management Software
Categorized inbound Flows
Redirects Data Flows to Specific Payload Blades
Combines Return Data out Proper Outbound Ports

1/10/40Gb/sec Inbound Traffic

12 – x1 40G or x4 10G Interfaces

ATCA Fabric I/F
40G Base KR4 Ready

ATCA-F140 (40G Switch)

Hard Drive Option
SERVICE PROCESSOR
Intel®’s Data Plane Packet Processing Software (DPDK®)

- Data Plane Development Kit (DPDK®)
- Introduced in Nehalem Class Xeon Processors
- Software Package to Optimize X86 Cores to Analyze IP Packet Data
- Optimized Data Plane Libraries and Optimized NIC Drivers in User Space
 - Under special version of Linux which separates high level control from algorithms running as threads on specific dedicated processor cores
 - Queue and Buffer Management, Packet Flow Classification and Poll Mode NIC Drivers
 - Low Overhead run-to-completion model optimized for fastest possible algorithm performance
- Additional DPDK® Libraries and Drivers
 - Memory Manager (Huge page tables to optimize performance)
 - Buffer Manager (Optimized memory allocation tool that eliminates need to lock)
 - Queue Manager (Manage incoming and outgoing data to the cores)
 - Flow Classification (IP flow management, optimized around Ethernet controller)
 - Poll Mode Drivers (User mode drivers eliminating interrupts for threads running algorithms)
- BSD License Model
ATCA Dual “Sandy Bridge” Packet Processing Blade

Processes Processor 0

- Physical Core 0
 - Linux® Control Plane
- Physical Core 1
 - AVX
 - Algorithm 1
 - Algorithm 2
- Physical Core 5
 - AVX
 - Algorithm 1
 - Algorithm 2
- Physical Core 6
 - AVX
 - Algorithm 1
 - Algorithm 2
- Physical Core 7
 - AVX
 - Algorithm 1
 - Algorithm 2

Gen3 PCIe

40G Network Interface Controller

Processes Processor 1

- Physical Core 0
 - Linux® Control Plane
- Physical Core 1
 - AVX
 - Algorithm 1
 - Algorithm 2
- Physical Core 5
 - AVX
 - Algorithm 1
 - Algorithm 2
- Physical Core 6
 - AVX
 - Algorithm 1
 - Algorithm 2
- Physical Core 7
 - AVX
 - Algorithm 1
 - Algorithm 2

Gen3 PCIe

40G Network Interface Controller

ATCA Fabric I/F
40G Base KR4
Ready
Let’s Put it All Together

10/40G ATCA Fabric is the internal data path

ATCA Switch

INBOUND SENSOR DATA

OUTBOUND PROCESSED DATA

Processing Array performs analysis 12 x Payload

10/40G ATCA Fabric