Addressing the Platform Challenges of Next Generation Electronic Warfare Systems

Haydn Nelson
Director of Marketing and AE, 4DSP Products
Electronic Warfare

Electronic Attack

Electronic Protect

Electronic Warfare Support
Typical Electronic Attack Mission
Traditional Electronic Warfare System

- **SBC347D**
 - Intel Xeon D
 - 32 GB DDR4

- **FMC170**
 - 5GSPS
 - Low Latency ADC

- **VP780**
 - FPGA w/FMC

- **FMC170**
 - 5GSPS
 - Low Latency DAC

- **GRA113**
 - NVIDIA GM107
 - 640-core GPU
EW Platform Challenge: Latency

End to End Latency Must be Minimized

- SBC
- FPGA
- GPU
- RF
- ADC
- DAC
- Memory
- VITA 57.1
- VITA 57.4
- JESD204B
- LVDS
- FMC170 5GSPS Low Latency ADC
- FMC170 5GSPS Low Latency DAC
VITA 57.1 & VITA 57.4 Pinout

Favors High Speed Serial Bus Going Forward

High Speed Serial Lane (Higher Latency, Higher Data Rates)

Parallel Data Bus (Lower Latency, Parallel Buses Required)

JESD204B (5 Lanes)

[Clocks]

[Sync]

[Power]

LVDS (22 Pairs)

JESD204B (1 Lane)

LVDS (12 Pairs)

JESD204B (9 Lanes)

LVDS (9 Lanes)

LVDS (22 Pairs)

LVDS (24 Pairs)

JTAG & Power

VIO

VADJ

VADJ

Parallel Data Bus

FM C+

FM C

LPC Connector

LPC Connector

HPC Connector

HSPC Connector

Abaco Systems
EW Platform Challenge: Resources & IP Security
EW Platform Challenge: ‘Use the Right Tool’

- **SBC**
 - Ideal for Cognitive EW, Complex Branching Execution
 - SBC347D Intel Xeon D 32 GB DDR4

- **GPU**
 - Ideal for deep learning neural net processing
 - GRA113 NVIDIA GM107 640-core GPU

- **FPGA**

- **DAC**

- **RF**

- **ADC**

- **Memory**

Highspeed data bus
Challenges of Next Generation EW Systems

- Large FPGA Fabric
- Required I/O Count
- IP Security
- Anti-Tamper
- Latency Optimized
- Synchronous
- Multi-Channel
- Wide Bandwidth
- GPUDirect RDMA
- C/C++ Languages
- High Performance DSP Functions
- High Performance
- Data Connection
- VITA 65
- Open VPX
- Fiber Connect
- Noise Performance
- SNR
- Dynamic Range
- Spectral Purity and Distortion
- High Power Output
- (GaS / GaN)

- Reduced Size
- Reduced Weight
- Reduced Power
- Reduced Cost
- Processor Architecture
- Cognitive EW Algorithms
- C/C++ Languages
- Latency Optimized
- Synchronous
- Multi-Channel
- Wide Bandwidth
- Large FPGA Fabric
- Required I/O Count
- IP Security
- Anti-Tamper
- Latency Optimized
- Synchronous
- Multi-Channel
- Wide Bandwidth
- GPUDirect RDMA
- C/C++ Languages
- High Performance DSP Functions

3U VPX

RF → ADC → FPGA → DAC → RF

highspeed data bus

SBC

GPU

Memory

abaco SYSTEMS
VPX167 COTS Airborne Pod Platform

FlexVPX Backplane 7 Slots

SBC347D
Intel Xeon D
32 GB DDR4

FMC170
5GSPS
Low Latency ADC

VP780
FPGA w/FMC

FMC170
5GSPS
Low Latency DAC

GRA113
NVIDIA GM107
640-core GPU

Power Supply

Local Oscillator

10MHz Reference

Power Supply
WE INNOVATE. WE DELIVER. YOU SUCCEED.