Tri-service Convergence:

C4ISR/ EW Modular Open Suite of Standards (CMOSS)

Embedded Tech Trends
23 January 2018

Ben Peddicord
Chief, Intel Technology and Architecture Branch
CERDEC I2WD
Problem Statement – Why Converge?

- Current generation of C4ISR/EW systems exceed the size, weight, and/or power available on current and planned future platforms
- At the core, C4ISR/EW systems use many of the same building blocks, but they are not shared or distributed between systems
- Each additional capability or function comes as its own “system” resulting in:
 - Integration challenges
 - Competition for limited platform resources
 - Redundant sub-system components
 - Complex, costly and weighty cabling
 - Excessive heat generation
 - Less space on the platform for soldiers
 - RF compatibility concerns
 - High cost of maintaining and upgrading

Years of quick reaction solutions have resulted in unsustainable SWaP-C and operator overload

Platforms – not just soldiers – are overburdened
Layered Standards

• Open interfaces enable rapid insertion of planned and unplanned capabilities, along with hardware sharing and interoperability across C4ISR/EW systems
• Layered approach includes specifications that are individually useful and can be combined to form a holistic converged architecture
• The aggregate architecture and associated standards is referred to as the C4ISR/EW Modular Open Suite of Standards (CMOSS)

Software Layer:
• Enables portability of software applications across hardware platforms
• Software framework selected based on mission area

Functional Decomposition:
• Allows for sharing of RF resources such as antennas and amplifiers
• Defines interfaces between RF functions and components
• Enables best of breed along with rapid component upgrades

Hardware Layer:
• Enables capabilities to be fielded as cards in a common chassis
• Common form factor including physical, electrical, and environmental specifications

Network Layer:
• Provides connectivity within the platform and defines interfaces between capabilities
• Enables legacy systems to share services within the converged architecture
Standards Overview

Vehicular Integration for C4ISR/ EW Interoperability (VICTORY)

• Provides interoperability across C4ISR, EW, and platform systems
• Adds a network data bus to vehicles and specifies “on-the-wire” interfaces
• Enables sharing of services such as Time, Position, and Orientation
• Applicable to ground, air, and sea platforms

Modular Open RF Architecture (MORA)

• Extends VICTORY to RF systems
• Establishes pooled RF resources (antennas, amplifiers, etc.) that can be shared across missions
• Leverages ANSI/VITA 49.2-2017 for low latency control and digital RF
• Being incorporated into the VICTORY Architecture and Standard Specifications
Standards Overview

- Hardware form factor enables capabilities to be fielded as cards in common chassis
- DoD profiles (i.e., pinouts) eliminate user-defined pins and support 2 Level Maintenance
- Single profile selected for each type of slot
- CMOSS profiles included in ANSI/VITA 65.0-2017

- Enables portability of software applications
- REDHAWK is a free and open-source software (FOSS) software defined radio (SDR) framework
- Software Communications Architecture (SCA) is developed by JTNC for Comms applications
- Future Airborne Capability Environment (FACE) is developed by NAVAIR PMA-209 for avionics applications
Architecture Overview

- "Universal A-Kit" allows PMs to field capabilities as cards in a common chassis and RF components that use existing cabling
- Logistic tails can be smaller due to common spares
- Unit costs can be reduced by greater competition and economies of scale
- Enables modernization through spares with hardware refresh every 5 years
- Architecture is applicable to ground, air, sea, and subsurface platforms
Participants

• **AF Life Cycle Management Command (AF LCMC):**
 - Participating/influencing Air Force Sensor Open Systems Architecture (SOSA)
 - I2WD is the Vice Chair of the SOSA Hardware Working Group
 - CMOSS is being included in the SOSA specification

• **NAVAIR PMA-209:** Alignment with Hardware Open System Technologies (HOST)

• **VICTORY Standard Support Office (VSSO):** Leveraging the VICTORY specification. MORA is being incorporated into the VICTORY Architecture and Standard Specifications.

• **Tank and Automotive Research, Development and Engineering Center (TARDEC):** Partner for vehicle integration. Stryker demo in FY17.

• **National Security Agency (NSA):** Participated in WIPT to ensure architecture is accreditable. Aligning MORA and TOA.

• **Academia:** Research and development partners
 - MIT-LL: VITA 65 profiles and editor
 - JHU-APL: VITA 65 and 49.2 development
 - PSU-ARL: PNT card and MORA reference implementation development
CMOSS Lab Validation

- VICTORY Data Bus
- MORA Low Latency Bus
- CMOSS Chassis
- MORA Radiohead
- MFoCS Tablet

CERDLC
US ARMY-EDCOM
CMOSS Reference Chassis

Transceiver
- EW Application
- REDHAWK Device
- MORA interfaces

Transceiver
- EW Application
- MORA interfaces

Single Board Computer
- EWPMT VM
- REDHAWK VM

Single Board Computer
- Video Processing
- EO/IR Sensors

Clock Test Card
- Drives radial clocks over the backplane

Ethernet Switch
- Control and Data Planes
- Front panel fiber ports

VI TA 62 Power Supplies
- Paralleled for output power and redundancy

RF Switch
- Connects transceivers to Radioheads
- MORA interfaces

VITA 62 Power Supplies
- Paralleled for output power and redundancy
Summary

• Built upon open standards, CMOSS enables the soldier for the next fight while providing significant cost savings during the procurement and sustainment phases of the life-cycle.

• CMOSS is being included in and managed under the SOSA initiative with Army, Air Force, and Navy participation.

• The CMOSS specifications can be obtained from:
 - VICTORY (https://portal.victory-standards.org)
 - MORA (https://portal.victory-standards.org/MORA)
 - OpenVPX (http://www.vita.com)
 - REDHAWK (https://redhawksdr.github.io/Documentation)
 - SCA (http://www.public.navy.mil/jtnc)
 - FACE (http://www.opengroup.org/face)
 - SOSA (http://www.opengroup.org/sosa)