Jump Starting RFSoC Technology for Radar and Mil-Aero Applications

Embedded Tech Trends
January 2019

Rodger Hosking
Pentek, Inc.
RFSoC – Radio Frequency System on Chip

- Xilinx RFSoC Overview
- RFSoC Market Opportunities
- RFSoC Design Challenges
- RFSoC Module Concept
- RFSoC Module Migrates to Other Form Factors
- QuartzXM RFSoC Module
- Summary
February 2017: Xilinx Announced RFSoC

“Xilinx Unveils Disruptive Integration and Architectural Breakthrough for 5G Wireless with RF-Class Analog Technology”
Xilinx UltraScale+ FPGA Resources

- 16 nm FPGA Fabric – Logic Cells, DSP Engines, Block RAM, etc.
- Advanced Real-Time Digital Signal Processing Engines
- Extensive General Purpose I/O for Peripherals

<table>
<thead>
<tr>
<th>FPGA RESOURCES</th>
<th>16 nm FPGA Fabric – Logic Cells, DSP Engines, Block RAM, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP Engines</td>
<td>Advanced Real-Time Digital Signal Processing Engines</td>
</tr>
<tr>
<td>Hi Performance GPIO</td>
<td>Extensive General Purpose I/O for Peripherals</td>
</tr>
<tr>
<td>Internal Block RAM</td>
<td></td>
</tr>
<tr>
<td>Internal UltraRAM</td>
<td></td>
</tr>
<tr>
<td>PCIe Gen4</td>
<td></td>
</tr>
<tr>
<td>GTY 28 gb Serial I/O</td>
<td></td>
</tr>
<tr>
<td>DDR4 Memory Controller</td>
<td></td>
</tr>
<tr>
<td>100G EMAC</td>
<td></td>
</tr>
</tbody>
</table>

- Fast Internal Memory and Controller for External DDR4
- PCIe Gen4 System Interface
- Enhanced 28 gb GTY Serial I/O and MAC for 100 GbE
Integrated Data Converters in the FPGA

- A/Ds and D/As are connected directly to FPGA fabric
- Lowest latency parallel interfaces

- 8 A/Ds: 12-bit, 4 GHz with integrated Digital Downconverters
- 8 D/As: 14-bit, 6.4 GHz with integrated Digital Upconverters
ARM Processor Resources

FPGA

Xilinx Zynq UltraScale+

8 A/Ds

8 D/As

ARM-based Processor System

USB

SATA

PCIe

GigE

DisplayPort

DDR4
ARM Based Processor System

- Application Processor: Four 64-bit ARM Cortex-A53 cores
- Real-Time Processor: Two ARM Cortex-R5 real time cores

- DDR4 Memory Controller and System Controller
- Security Manager and Platform Management Unit
- High-Speed Connectivity and Processor I/O
RFSoC – Complete RF System on Chip

- Complete 8-Channel RF Transceiver, DSP and Control Processor sub-system on a single monolithic chip!
Topics

- Xilinx RFSoC Overview
- RFSoC Market Opportunities
- RFSoC Design Challenges
- RFSoC Module Concept
- RFSoC Module Migrates to Other Form Factors
- QuartzXM RFSoC Module
- Summary
RFSoC Market Opportunities

- **Radar**
 - Tactical battleground and airborne monitoring, classification, and tracking of targets
 - Fire control systems
 - Multi-function Phased Array Radar (MPAR) initiative combines U.S. weather and radar networks
 - Common Module beamformer for DARPA Arrays Commercial Time Scales (ACT) program

- **EW and Countermeasures**
 - Low latency applications
 - Jamming and Spoofing

- **Communications**
 - SATCOM and Military / Airborne Radios
 - Phased array transceivers

- **SIGINT**
 - Monitoring, Interception, and Analysis

- **5G Wireless & Cable Remote PHY**
 - Remote radio head for Massive-MIMO, wireless backhaul, and fixed wireless access
 - Implements DOCSIS 3.x PHY Spectral Efficiency requirements for distributed broadband digital networks
How Does RFSoC Change Mil-Aero Embedded Market?

- Reduced size and footprint
 - About 50% less compared with discrete data converters, FPGA & processor
- Reduced power
 - About 30-40% total power savings
- Reduced cost
 - About 40-60% total cost savings
- Reduced latency
 - About 70% less delay than JESD204 data converters

- Moves SDR closer to the antenna
- Wideband digital RF transceiver links
- Longer missions for UAVs
- Smaller & smarter unmanned vehicles
- Less weight for airborne systems
- Improved density for phased arrays
- Better dynamic range for signals
- Low latency improves countermeasures
- Remote monitoring and sensing
- Economic practicality of new applications

Kintex UltraScale+ FPGA

ARM

RFSoC

2 Ch A/D 2 Ch A/D 2 Ch A/D 2 Ch A/D
2 Ch D/A 2 Ch D/A 2 Ch D/A 2 Ch D/A
Topics

- Xilinx RFSoC Overview
- RFSoC Market Opportunities
- RFSoC Design Challenges
- RFSoC Module Concept
- RFSoC Module Migrates to Other Form Factors
- QuartzXM RFSoC Module
- Summary
RFSoC: Board Level Design Issues

- **RF Signal Integrity**
 - 16 Analog RF Signals with GHz Bandwidths
 - Spurious digital signal pickup
 - Crosstalk between analog channels
 - Signal path integrity and impedance

- **Clock Management**
 - Data Converter Sample Clocks
 - FPGA Fabric and Gigabit Serial Links

- **Gigabit Serial Links – 28 Gbit GTY**
 - Signal path integrity and impedance
 - Bit error rate considerations

- **Power Supply Requirements**
 - RFSoC chip requires 13 different power supplies
 - Analog supplies must be extremely clean

- **ARM Processor I/O**
 - USB, Serial, Display Port, GbE

- **2400 MHz DDR4 SDRAMs**
 - 8GB FPGA and 8GB ARM

- **Thermal Management**
 - Air- or conduction-cooling provisions
Design Strategies for RFSoC

- What’s the shortest path from RFSoC chip to a Deployed Product?
- How long will it take to deal with all these RFSoC design Issues?
- How can I get a running start to cut development time?
Topics

- Xilinx RFSoC Overview
- RFSoC Market Opportunities
- RFSoC Design Challenges
- RFSoC Module Concept
- RFSoC Module Migrates to Other Form Factors
- QuartzXM RFSoC Module
- Summary
Mezzanine Designs Abound in Embedded Systems
RFSoC Mezzanine Module Concept

- Digital & RF Connectors
 - Preserves integrity of RF and gigabit serial signals
- Generates all 13 RFSoC power supplies from single +12V input
- FLASH for FPGA Configuration code
- DDR4 memories for FPGA & ARM processor
- Maintains PCB constraints for bypassing, filtering, & geometries
- Includes RFSoC clock management
- Health monitoring facilities
- Excellent path for addressing SWaP requirements
Topics

- Xilinx RFSoC Overview
- RFSoC Market Opportunities
- RFSoC Design Challenges
- RFSoC Module Concept
- RFSoC Module Migrates to Other Form Factors
- QuartzXM RFSoC Module
- Summary
Carrier Example: 3U VPX Platform for RFSoC Mezzanine

- **VITA 66.x Optical Backplane VPX I/O**
 - Several full- and half-width blind-mate optical connector types
 - Provides high bandwidth data paths between boards and chassis

- **VITA 67.x Coax Backplane VPX I/O**
 - Several multi-position connector types – up to 12 coax signals
 - RF signal bandwidths to 40 GHz
 - Eliminates front panel signal cables

- **VITA 65.0 & VITA 65.1 OpenVPX - 2017**
 - Major enhancements reflect widespread use and adoption of OpenVPX
 - New Card, Slot and Backplane Profiles
 - Radial Backplane Clock distribution ensures precision timing and synchronization across boards
 - Provision for a 100 MHz reference clock
 - New definitions of combinations of VITA 66.x optical and VITA 67.x coaxial backplane I/O
RFSoC Mezzanine Module on 3U VPX – Front Analog I/O

- Open Architecture Form Factor Supporting Industry Standards
 - VITA 65.1 OpenVPX
 - VITA 66.4 Optical Serial Backplane I/O
- Complete functional sub-system on one 3U VPX module
- Scales easily to support high-channel count systems
- Synchronization across multiple modules
RFSoC Module on 3U VPX – Backplane Analog I/O

- Similar except analog RF I/O connects through backplane
- VITA 67.3 defines several possible RF backplane & optical connector formats
- Simplifies system integration and maintenance tasks
- Improves reliability by eliminating cables
RFSoC Module on PCIe

- Allows RFSoC development tasks in a low cost PC platform
- Perfect for software and FPGA development seats
- Perfect for continuation engineering and support
- Supports deployed applications for benign environments
Migrating RFSoC Module to Custom Platforms

- **Development Strategy**
 - Start with standard open-architecture product VPX or PCIe
 - Develop software and IP for custom form factor application

- **Custom Carrier Design**
 - Use RFSoC Carrier Design Package
 - Pin definition, design rules, layout guidance and design review
 - Attach RFSoC Module

- **Support and Reference**
 - Keep PCIe or VPX development system for support, enhancements, and new designs
Small Form Factor Remote RFSoC Sub-System

- Install it within a suitable SFF sealed enclosure
- Analog RF I/O over coaxial copper cables
- Wideband Digital RF over dual optical 100 GbE
- Control and Command over 1 GbE copper
- 12V power over copper
- Mount the unit on a mast near the antenna
- Complete 8-channel RF transceiver sub-system
Migration to Complex Phased-Array Antenna Systems

- Custom 64-channel circuit board assembly behind phased-array antenna system
RFSoC Module Enables New Deployment Platforms

- SWaP Optimized RFSoC Module is Ideal for Small Unmanned Vehicles and Weapons
Topics

- Xilinx RFSoC Overview
- RFSoC Market Opportunities
- RFSoC Design Challenges
- RFSoC Module Concept
- RFSoC Module Migrates to Other Form Factors
- QuartzXM RFSoC Module
- Summary
Pentek QuartzXM RFSoC eXpress Module

- Mezzanine module simplifies and speeds custom RFSoC product designs
- 28 layer PCB
- Over 4000 drilled holes
- Uses advanced PCB fabrication techniques including: sequential lamination, backdrilling, blind and buried vias, etc.
- Supports 28Gbps GTY serial interfaces for dual 100 GbE ports
- Eliminates critical PCB design issues required for RFSoC chip
- Speeds adoption of RFSoC Technology!
QuartzXM Carrier Design Package

- All documentation needed for a customer to design his own carrier
- Complete design documentation of 3U VPX QuartzXM Carrier
 - 3U VPX carrier product serves as a proven reference design
 - Schematics, PCB artwork, and 3D mechanical models
 - PCB stack-up recommendations
 - PCB design guidelines and routing rules
- Definition and Specifications of QuartzXM module
 - Pin definitions and electrical specifications of all signals
 - 3D mechanical models and thermal profiles
- Operating system and bootstrap guidelines
- Additional electrical and mechanical engineering guidance
RFSoC Development Strategies and Resources

- Xilinx RFSoC Offers Extreme Integration for Mil-Aero Applications
 - A/D, D/A, FPGA, ARM Processor, Flexible I/O
 - Low Latency for wideband RF signals
- Pentek QuartzXM Simplifies System Design
 - Small footprint for high density applications
 - High performance RF and digital connectors
 - Complete RFSoC infrastructure - DDR4, clocks, & power supplies
 - Carrier Design Package for custom deployed form factors
- Xilinx Vivado Tools
 - FPGA development tools
 - ARM processor OS and development tools
- Pentek Navigator FDK and BSP Tools
 - API command processor for ARM
 - Factory installed IP: timing, DMAs, PCIe, dual 100 GbE
 - FPGA IP AXI-4 library functions
 - Starter application examples installed
- Speeds development cycles, saves costs
Thank You!! – Questions??

Visit: www.pentek.com/rfsoc